

関数電卓 Scientific Calculator

使用説明書 保証書付 OPERATION MANUAL

お買い上げいただきまして、まことにありがとうごさいます。F788dx を使用される前に、「お願いとご注意」を必ずお読みください。ま た、本書を大切に保管し、いつでも参照できるようにしてください。

お願いとご注意

- ▲ 本機はLSI などの精密電子部品で構成されていますので、次の場所ではご使用にならないでください。
- 直接日光や暖房などによって高温になるところ
- 温度変化の激しいところ
- 湿気、ごみ、ほこりの多いところ
- ▲ 本体が汚れたときには乾いた柔らかい布で汚れをふき取って ください。有機溶剤(シンナー、ベンジン)は絶対に使用し ないでください。
- ▲ 液晶表示パネルは、ガラスでできていますので、強く押さえ つけないでください。
- ▲ 本機を絶対に分解しないでください。 万一、故障したと考えられる場合は本機をお買い上げの販売 店、または最寄りのキャノン販売営業所・サービスセンター まで保証書を添えて、ご持参もしくはご郵送ください。

目次	uditt
主一 配列 P 3	記
表示部(2行表示)	₩
ご使用になる前に	Ш
電源ON/OFF P.5	
表示コントラスト調整 P.5	
入力容量P.5	
モード選択	
表示万法設定 P.7	
八刀編朱	
リノレイ、コレー、マルナスノードスノド P.O 計質フタック数 PQ	
a 算 節 囲 ・ 演 算 桁 数 ・ 精 度 P 1 0	
演算の優先順位	
エラーメッセージ	
計算を始める前に P.14	
基本計算 P.15	
四則演算	
メモリ計算 P.16	
分数計算	
ハーセント計算 P.18	
F.20 単位換管 P.24	
工学表示計算	
小数点以下桁数指定、有効桁数指定、	
および内部数値丸め P.26	
関数計算 P.27	
二乗、ルート、三乗、三乗根、べき乗、べき乗根、	
逆数、π	
用度単位发換	
二用))	
対象、 日然対象、 指象、 LOyab F.29	
複素数計算	
n進計算と論理演算P.32	
統計計算 P.34	
標準偏差 P.35	
回帰計算P.35	
分布計算	
順列、組合せ、階乗、乱数発生	
」力程式計算	
ンルノ (
数式 时豆球機能	
福分計算 P 47	
行列計算	
ベクトル計算 P 52	
電池の交換	

_

キー配列

ご使用になる前に

電源ON/OFF

- 最初の操作:
 - 1. 電池絶縁シートを引き出してください。計算機の電源を入れ ることができるようになります。
 - ボールペン等の先の尖ったもので本体裏面のリセットボタン を押してください。

○ (電源ON/クリア):これを押すと、計算機の電源がオンになります。
 ○ (電源OFF):これを押すと、計算機の電源がオフになります。

■ オートパワーオフ機能 本機は約7分間操作を行ないませんと、むだな電源消費を防ぐた めに自動的に電源が切れ、表示が消えます。この場合は、 ○N/C キ ーを押せば、再び電源が入ります。

表示コントラスト調整

Shift contrastを押してください。以下の表示が現れ、液晶ディスプレイのコントラストを調整できます。

◆ を押すと、ディスプレイのコントラストが暗くなります。
 ◆ を押すと、ディスプレイのコントラストが明るくなります。
 調整後 ONCCを押すと、計算画面に戻ります。(0. が表示されます。)
 調整後 ONCC を押すと、演算中の内容が表示されます。

入力容量

F-788dxには、計算を行なうための最大79ステップの記憶領域が あります。数字キー、演算キー、科学計算キー、または を押す たびに、1ステップとなります ご (の) のように2つのキー 操作によって1つの機能を呼び出す場合は2キー入力で1ステップと なります。

72番目のステップから、カーソルが [_] から [■] に変わり、メモ リが残り少なくなっていること知らせます。1つの計算で79ステッ プを超える計算を入力する必要がある場合には、その計算を2つに 分けて、計算を行なってください。 モード選択

└── を押して計算モードの選択を開始します。以下の表示が現れます。

語

₩

Ш

← → または ^{™™}を押すと、次(または前)のモード選択ページに 行くことができます。

以下の表に、モード選択メニューを示します。

操作		モード	液晶ディスプレイ インジケータ	参照 ページ
MODE 1	COMP	通常計算		P15
	CPLX	複素数計算	CPLX	P30
MODE 3	SD	統計計算	SD	P34
MODE MODE 1	REG	回帰計算	REG	P35
	BASE	n進計算	d / h / b / o	P32
MODE MODE 3	EQN	方程式計算	EQN	P41
MODE MODE MODE 1	MATX	行列計算	MATX	P48
MODE MODE MODE 2	VCTR	ベクトル計算	VCTR	P52
MODE MODE MODE 1	Deg	Degree(度・ディグリー)	D	P28
MODE MODE MODE 2	Rad	Radian(ラジアン)	R	P28
MODE MODE MODE 3	Gra	Grade(グレード)	G	P28
MODE + 1	Fix	固定小数点	FIX	P26
^{MODE} ← ← 2	Sci	科学指数表示	SCI	P26
MODE ← → 3	Norm	工学指数表示		P26
	Disp ^{*1}	表示セットアップ選択		

*¹Disp:「表示セットアップ選択」オプション

- 先頭ページ: 1 [Eng ON]または 2 [Eng OFF]を押して、工学 指数表示をオンまたはオフにします。
 - ▶ : 1 [ab/c]または 2 [d/c]を押して、帯分数または仮 分数表示を指定します。
 - ◆ → : 1 [Dot]または 2 [Comma]を押して、小数点表示 設定を切り替えます。
 - [Dot] :小数点はドット(点)で、3桁区切りは カンマ(,)で表示
 - [Comma]: 小数点はカンマ(,)で、3桁区切りは ドット(点)で表示

・計算モードの確認及びクリア方法についてはP14をご参照ください。

表示方法設定

本機は、最大10桁の演算結果を表示できます。整数部が10桁を超 える演算結果は、自動的に指数表示されます。

例:1.23 x10-03に関して表示方法を変更する。

表示設定	操作	表示(下の行)
初期設定:		
Norm 1, EngOFF	123 🗴 💿 00001 🖃	1.23 x10 ⁻⁰³
科学表示:		
有効桁: "5"	MODE ← ← 2 5	1.2300 x10 ⁻⁰³
指数表示:Norm 2		0.00123
固定小数桁:"7"		0.0012300

*Norm1, 2についてはP26をご参照ください。

例:1.23 x10⁻⁰³ = 1.23 m(ミリ)

表示設定	操作	表示
工学指数表示:ON		123x.00001 m
		1.23
工学指数表示のない表示	Shift 4 ENG	123x.00001
		0.00123

入力編集

← → (DEL) Insert Undo

新しい入力は、上(入力)の行の左から始まります。入力が12桁を 超えると、行が右にスクロールしていきます。 ← → を押すと、上 (入力)の行でカーソルがスクロールし、必要に応じて入力を編集 することができます。

例(編集中): 1234567 + 889900

入力の置換(1234567 → 1234560)

表示設定	操作	表示(下の行)
"7"が点滅するまで押す	+	123456 <u>7</u> +8899 →
"0" に置換	0	1234560 <u>+</u> 8899 →

削除(1234560 → 134560)

			盟
"2" が点滅するまで押す	←	1234560+8899 →	×
"2"が削除される	DEL	∽ 1 <u>3</u> 4560+88990 →	

挿入(889900 → 2889900)

"8"が点滅するまで押す	→	134560+ <u>8</u> 8990 →
"8"と[]が交互に点滅	Shift Insert	134560+ <mark>8</mark> 8990 ➡
" 2 " を挿入する、" 8 " はまだ点滅	2	134560+2 <mark>8</mark> 899 →

アンドゥ(889900)

"889900 "をクリアする、ひは まだ点滅している	ON/C	∽ 134560+2 ^[]
" 889900 " を回復する。	Shift Undo	← 560+2889900[]

- ● で入力を削除したり、 で入力をクリアした後には、 アイコンが表示部に示されます。
- Shift Under でアンドゥすることによって、最大79の 回目 削除入力を回復したり、クリアされた部分を元通りにして前の表示に戻ることができます。
- ■L...●NC を押して文字を削除してから表示をクリアした場合、 最後の●NC クリア文字の回復からアンドゥが優先され、その後 に削除文字が続きます。
- 置換及び挿入後のアンドゥはできません。

リプレイ、コピー、マルチステートメント

リプレイ

- 計算式と演算結果を保存できるリプレイメモリ容量は128バイトです。
- 計算実行後に、自動的に計算式と演算結果がリプレイメモリに 保存されます。
- ↑(または ↓)を押すことによって、実行された計算式と演算 結果をリプレイすることができます。
- 以下を行うと、リプレイメモリがクリアされます。
 - i) Shift CLR 2(または3) = で計算機設定をリセットする。
 - ii) 計算モードを切り替える。
- コピー
 - 前の計算式(ステートメント)のリプレイ後に
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご
 ご

マルチステートメント

- コロン 一 を用いることによって、2つ以上の計算式を同時に 入力することができます。
- 最初に実行されたステートメントには、[Disp]インジケータが 付きます。最後のステートメントの実行後に、[Disp]アイコン が消えます。

例:

操作	表示(上の行)	表示(下の行)
8 + 9 =	8 + 9	17.
$5 \times 2 \stackrel{\text{shift}}{\frown} \frac{1}{\Box} + 6 =$	5 x 2	10. _{Disp}
=	Ans + 6	16.
↑ ↑ Shift Copy	9 : 5 x 2 : Ans + 6	17.
=	8 + 9	17. _{Disp}
Ξ	5 x 2	10. _{Disp}
Ξ	Ans + 6	16.

計算スタック数

- ■本機は、「スタック」と呼ばれるメモリエリアを用いて、計算時 に優先順位に従って数値(数)と演算命令(関数等)を一時的に 保存します。
- 数値用スタックは10レベル、演算命令用のスタックは24レベルです。スタックの容量を超える計算を実行しようとすると、スタックエラー [Stack ERROR]が発生します。
- 一行列計算では、最大2レベルの行列スタックが利用可能です。行列の2乗、3乗、および逆行列では、1レベルの行列スタックを使用します。
- 計算は「演算順序」に従って順番に実行されます。計算された数 値又は演算命令は、スタックの中から消去されます。

演算範囲・演算桁数・精度

内部演算桁数:最大16桁 精度:原則として1回の計算につき10桁目の誤差,±1 出力範囲:±1x10⁻⁹⁹~±9.999999999x10⁹⁹

関数		入力範囲		
sin x	Deg	$0 \le \mathbf{x} \le 4.499999999 \mathbf{x} 10^{10}$		
	Rad	0 ≤ x ≤ 785398163.3		
	Grad	Grad $0 \le x \le 4.999999999x10^{10}$		
cos x	Deg	$0 \le \mathbf{x} \le 4.50000008 \mathbf{x} 10^{10}$		
	Rad	0 ≦ x ≦ 785398164.9		
	Grad	$0 \le x \le 5.00000009 \times 10^{10}$		
tan x	Deg	x =90(2n-1)の時を除いて、sinxと同じ		
	Rad	x = /2(2n-1)の時を除いて、sinxと同じ		
	Grad	x =100(2n-1)の時を除いて、sinxと同じ		
sin⁻¹x	0 ≦ x	≦1		
cos⁻¹x				
tan⁻¹x	0 ≦ x	≦ 9.9999999999x10 ⁹⁹		
tanhx				
sinhx	0 ≤ x ≤ 230.2585092			
coshx				
sinh⁻¹x	$0 \le \mathbf{x} \le 4.99999999910^{99}$			
cosh⁻¹x	$1 \le x \le 4.999999999x 10^{99}$			
tanh⁻¹x	$0 \le \mathbf{x} \le 9.999999999 \mathbf{x} 10^{-1}$			
logx	$0 < x \le 9.999999999x 10^{99}$			
Inx				
10 [×]	$-9.999999999x10^{99} \le x \le 99.99999999$			
e ^x	$-9.999999999x10^{99} \le x \le 230.2585092$			
\sqrt{X}	$0 \le x < 1x10^{100}$			
X ²	x < 1x10 ⁵⁰			
X ³	x ≦ 2.1544346933x10 ³³			
1/x	x < 1x10 ¹⁰⁰ ; x ≒ 0			
∛ x	x < 1x10 ¹⁰⁰			
X!	0≦x≦69 (x は整数)			

関数	入力範囲	
nPr	0≦n < 1x10 ¹⁰ , 0≦r ≦n (nとrは整数)	
	$1 \leq \{n!/(n-r)!\} \leq 1 \times 10^{100}$	
nCr	0≦n < 1x10 ¹⁰ , 0≦r≦n (nとrは整数)	
	$1 \leq [n!/\{r!(n-r)!\}] \leq 1 \times 10^{100}$	
Pol(x,y)	$ x , y \le 9.999999999x10^{49}$	
	$(x^2 + y^2) \le 9.9999999999x 10^{99}$	
Rec(r, θ)	$0 \le r \le 9.999999999x10^{99}$	
	θ : sinxと同じ	
0 ; ;;	a , b, c < 1x10 ¹⁰⁰	
	0≦b, c	
< ° '"	$ x \le 1x10^{100}$	
	10進 ↔ 60進変換	
	0°0°0° ≦ x ≦ 999999°59°	
^(x ^y)	x>0: $-1x10^{100} \le y \log x \le 100$	
	x=0: $y > 0$	
	x<0: y=n,1/(2n+1), (nは整数),	
	ただし:-1x10 ¹⁰⁰ < y log x < 100	
$x \sqrt{y}$	y>0: x ≠ 0	
	-1x10 ¹⁰⁰ < (1/x) log y < 100	
	y=0: x > 0	
	y<0: x=2n+1,1/n (n ≒ 0, nは整数)	
	ただし: -1x10 ¹⁰⁰ < (1/x) log y < 100	
a ^b /c	整数、分子、分母の合計が10桁以下	
	(除算記号を含む)。	
SD	$ x < 1x10^{50}$,	
(REG)	$ y < 1 \times 10^{50}$,	
	$ n < 1 \times 10^{100}$	
	$x\sigma_n, y\sigma_n, x, y:n \neq 0$	
	xo _{n-1} , yo _{n-1} , A, B, r, : n ≠ 0, 1	
Base-n	BIN: 止 : 0~0111 1111 1111 1111 1111 1111 1111	
	頁 : 1000 0000 0000 0000 0000 0000 0000 0	
	DEC: IF: $U \sim 214/48364/$	
	貝:-214/48364/~-1	
	貝:200 0000 0000~3// //// ////	
	貝 : 8000 0000~ FFFF FFFF	

*1回の計算では、計算誤差は10桁目で \pm 1です。指数表示の場合、 誤差は最下位桁において \pm 1となります。連続計算の場合には誤差 が累積され、そのため誤差がより大きくなることがあります。 ($^{(X^{y})}$ 、 $^{x}\sqrt{y}$ 、x!、nPr、nCr等で内部連続計算が実行される場合に も当てはまります。)関数の特異点と変曲点の近くでは、誤差が累 積され、大きくなることがあります。

日本語

演算の優先順位

本機は、自動的に演算優先順位を判断します。そのため、書かれて いる通りに数式を入力することができ、演算優先順位は次のように なります。

1)	座標変換	: Pol(x, y), Rec(r, θ)
	微分・積分	: d/dx, ∫dx
	正規分布	: P(, Q(, R(
	変数aとbを伴なう対数	: log _a b(a, b)
	ランダム整数生成	: i~Rand(A, B)

2) A タイプ関数
 3乗、2乗、逆数、階乗 : x³, x², x⁻¹, x!, °' "
 工学指数表示
 正規分布 : →t
 統計の推定値の計算 : x̂, x̂₁, x̂₂, ŷ
 角度単位変換 : DRG ▶
 単位換算

Aタイプ関数を実行する場合は、数値を入力してから、上記の 関数キーを押してください。

- 3) 累乗と累乗根 : ∧(x^y), √
- 4) 分数 : a b/c, b/c
- 5) 、e(自然対数底)、変数メモリ、科学定数の直前の乗算省略: 2π, 3e, 5A, Aπ, など。
- 6) Bタイプ関数

 √, ³√, log, ln, e^x, 10^x, sin, cos, tan, sin⁻¹, cos⁻¹, tan⁻¹, sinh, cosh, tanh, sinh⁻¹, cosh⁻¹, tanh⁻¹, (–), d, h, b, o, Neg, Not, Det, Trn, arg, Abs, Conjg.
 Bタイプ関数を実行する場合は、上記の関数キーを押してから、数値を入力してください。
- 7) Bタイプ関数の前の乗算省略: 2√3, Alog2, など。

- 8) 順列(nPr)、組合せ(nCr)、角度(∠)
- 9) ドット(・)
- 10) 乗除算:×,÷
- 11) 加減算:+,-
- 12) 論理積: (and)
- 13) 論理和(or)、排他的論理和(xor)、排他的論理和の否定(xnor)

同じ優先順位の演算は右から左に実行されます。 例: $e^{In\sqrt{120}} \rightarrow e^{In(\sqrt{120})}$ 。他の演算は左から右に実行されます。

括弧内の演算は最初に実行されます。負数が計算に含まれている場合には、負数を括弧内に入れる必要がある場合があります。 例: ①(-2)⁴ = 16、②-2⁴ = -16

① は後置の関数 X² の優先順位が、負符号よりも高いため、(-2)⁴と入 力することが必要です。

エラーメッセージ

本機の容量を超える演算を実行しようとしたり、不適切な入力が行なわれた場合、エラーメッセージが表示されます。エラーメッセージが表示されている間は、本機はロックされ、使用できません。 ■ 「on/clを押すと、エラーがクリアされます。

■ ← または → を押すと、エラーの下にカーソルが置かれた状態 で計算が表示され、それに応じてエラーを修正することができます。

エラーメッセージ	原因	処置
Math ERROR	 演算結果が許容計算範 囲を超えている。 許容入力範囲を超える 値を用いて計算を実行 しようとした。 数学的に誤った演算(0 による除算等)を実行 しようとした。 	入力値をチェックし、それ らがすべて許容範囲内にあ ることを確認してください。 使用しているメモリエリア の値に特に注意してください。

エラーメッセージ	原因	処置	ил
Stack ERROR	数値用スタックまたは演算 命令用スタックの容量を越 えている。	計算を簡素化してくださ い。数値用スタックは10 レベル、演算命令用スタ ックは24レベルです。計算 式を2つ以上に分けてくだ さい。	日本部
Syntax ERROR	入力した算式に誤りがあ る。	◆ または → を押して、 エラー箇所を表示させ、算 式を訂正してください。	
Arg ERROR	引数の使い方が不適当。	◆ または → を押して、 エラー箇所を表示させ、 必要な修正を行ってくだ さい。	
Dim ERROR	 ・行列またはベクトル計算 で、次元(行、列)が3 を超えている。 ・不適切な行列/ベクトル計 算を実行しようとした。 	◆ または → を押して、 エラー箇所を表示させ、 次元を指定し直してくだ さい。	
Solve ERROR	解機能によって計算結果を 得ることができない。	◆または → を押して、 エラーの原因の部分を表示 し、必要な修正を行ってく ださい。	

計算を始める前に

■ 現在の計算モードを確認します 計算を始める前に、現在の計算モード(CPLX、SD等)と角度単位 設定(Deg、Rad、Gra)を示す状態インジケータを必ず確認してく ださい。

■ 計算モードを初期設定に戻します

Shift □ 2 (Mode) = を押すことによって、計算モードを初期設定に戻すことができます。

計算モ	ード	:	COMP
角度単位	位設定	:	Deg
指数表	示設定	:	Norm 1, Engオフ
複素数	表示設定	:	a+b <i>i</i>
分数表	示設定	:	a b/c
小数点	表示設定	:	Dot

この操作によって、変数メモリがクリアされることはありません。

■ 計算機を初期化します

以下のキー操作を行うことによって、計算機を初期化することがで きます。(すべてのモード、設定が初期状態に戻り、リプレイメモ リ、変数メモリの内容もクリアされます。)

基本計算

■ 基本計算を行う場合は、^{MOME} ① を押してCOMPモードにします。
 ■ 計算中には、メッセージ[PROCESSING]が表示されます。

四則演算

+ - × ÷

- 負の値(負の指数を除く)を計算する場合は、値を括弧内に入れ てください。
- ・負の値を入力する際は(-)を使用します。

計算式	操作	表示(計算結果)
(-2.5) ²	((-) 2 • 5)	
		6.25
(4 x 10 ⁷⁵)(-2 x 10 ⁻⁷⁹)	4 EXP 7 5 X (-)	
	2 EXP (-) 7 9 =	-8 x10 ⁻⁰⁴

- ・本機は24レベルの挿入式をサポートしています。
- 計算が 三 またはM+で終わる場合には、閉じ括弧) を省略することができます。

計算式	操作	表示(計算結果)
(tan - 45) ÷ (-2)	tan (-) 4 5 ÷ (-)	
	2 =	0.5
tan (- 45 ÷ -2)	tan ((-) 4 5 ÷	
		0.414213562

! ① の数が (より多い場合には、[Syntax ERROR]となります。

メモリ計算

語

₩

Ш

変数メモリ

- データ、演算結果、定数を保存する、20の変数メモリ(0~9、 A~F、M、X、Y、Z)があります。
- ・数値をメモリに保存する場合は、 5™ + 変数メモリを押します。
- ・メモリ値を呼び出す場合は、 RL + 変数メモリを押します。
- **0** 500 + 変数メモリを押すことによって、メモリの内容をクリアすることができます。
- 例: 23+7(Aに保存)、サインの計算(メモリA)、メモリAのク リア

計算操作	表示(上の行)	表示(下の行)
23 + 7 sto A	23+7 ➡ A	30.
sin RCL A =	sin A	0.5
	0 → A	0.

独立メモリ

- ・ 独立メモリ □ は、変数メモリと同じメモリエリアを使用しています。これは、累計を計算するのに便利です。 №+(メモリに数値を加算)または □ (メモリから数値を減算)を押すだけでよく、計算機の電源をオフにしてもメモリの内容が保持されます。
- ・ 独立メモリ(M)の内容をクリアする場合は、
 ● □ と入 力します。
- ! メモリ値をすべてクリアしたい場合は、^{Shift} □ 1 (Mcl) = を 押してください。

ラストアンサメモリ

- 続いて以下のキー(+、-、×、÷、x²、x³、x⁻¹、x!、DRG▶、 (x^y)、^x、nPr、nCr)を押すと、表示値が[Ans]とオペレータキ ーに変更されます。そして、直前のラストアンサメモリを使用し て新しい計算を実行することができます。

計算操作	表示(上の行)	表示(下の行)
1 2 3 + 4 5 6 M+	123+456M+	579.
	Ans ²	335,241.

 Ans を押すことによって、最後に保存されたラストアンサメモリ を呼び出して使用することができます。

計算操作	表示(上の行)	表示(下の行)
789900 — Ans =	789900 – Ans	454,659.

! 演算結果がエラーの場合には、ラストアンサメモリは更新されません。

分数計算

 $\begin{bmatrix} a & b/c \end{bmatrix}$

分数、小数点、帯分数、仮分数の間で表示を切り替えることができ ます。

分数計算、分数 ↔ 小数点表示切り替え

例	操作	表示(下の行)
$1\frac{2}{2} + \frac{5}{2} = 2\frac{1}{2}$	1 <i>a b/c</i> 2 <i>a b/c</i> 3	
	+ 5 <i>a b/c</i> 6 =	2 _1 _ 2.
$2\frac{1}{2} \leftrightarrow 2.5$ (分数 \leftrightarrow		2.5
小数点)		2 ∟1 ⊔ 2.

- 演算結果の総桁数(整数+分子+分母+除算記号)が10を越える 場合には、自動的に小数点表示されます。
- 分数計算に小数が混じっている場合には、演算結果は小数点表示 されます。

小数点 ↔ 帯分数 ↔ 仮分数表示切り替え

例	操作	表示(下の行)
$5.25 \leftrightarrow 5\frac{1}{4}$	5 • 25 =	5.25
(小数点 ↔ 帯分数)	<i>a b/c</i>	5_1_4.
(帯分数 \leftrightarrow 仮分数)	$ \overset{\text{shift}}{\bigcirc} a b/c $	21」4.

・表示切り替えには2秒かかることがあります。

! 分数計算結果(演算結果が1より大きい場合)表示を、帯分数また は仮分数で指定することができます。 ← [Disp] 1 → を押し てから、帯分数で表示させるか仮分数で表示させるかを設定して ください。

日本語

1 a b/c : 帯分数

2 b/c : 仮分数

! 仮分数[d/c]表示を選択して帯分数を入力すると、[Math ERROR]
 となります。

パーセント計算

~

以下のパーセント計算を実行することができます。

基本

: ある値のパーセントの計算 (A ≥ B ^{Shift} ²). : ある値の別の値に対するパーセント (A ÷ B ^{Shift} ²).

例	操作	表示 (上の行)	表示(下の行)
820の25%の計算	820 × 25 ^{Shift} %	820 x 25 %	205.
750の1250に 対する割合	750 ÷ 1250 ^{shift}	750 ÷ 1250 %	60.

割増:値AをB%割増 (A × B ^{Shift} ~ +) 割引:値AをB%割引 (A × B ^{Shift} ~ 一)

例	操作	表示(上の行)	表示(下の行)
820を25%割増	820 x 25 ^{Shift} [%] +	820 x 25 % +	1,025.
820を25%割引	820 x 25 ^{Shift} [%]	820 x 25 % –	615.

増加割合 : AをBに加えた場合のBの増加割合は: $\left[\frac{A+B}{B}\right] \times 100\% (A + B \stackrel{\text{shift}}{\frown})$

変化率 : AがBに変化した場合のAからBの変化率は: $\left[\frac{B-A}{A}\right]$ % (A - B $\stackrel{\text{Shift}}{\frown}$)

例	操作	表示(上の行)	表示(下の行)
300を750に加え た場合の750 の増加割合は	300 + 750 ^{Shift}	300 + 750 %	140.
25が30に増加 した場合の25 の変化率は	30 — 25 💍 🗂	30 – 25 %	20.

```
比率 : 計算式中の各部分の比率
A+B+C=Dの場合
AはDのa% (a= AD ×100%)
```

例: 25+85+90=200 (100%)の場合に各部分の比率を計算する と、25の比率は12.5%、85の比率は42.5%、90の比率は45%。

操作	表示(上の行)	表示(下の行)
25 + 85 + 90 sto * —	25+85+90 → A	200.
25÷ RCL * A Shift %	25 ÷ A %	12.5.
85÷ RCL * A Shift %	85 ÷ A %	42.5.
90 \div $\stackrel{Alpha}{\frown}$ $*$ $\stackrel{A}{\frown}$ $\stackrel{Shift}{\frown}$ $\stackrel{\%}{\frown}$	90 ÷ A %	45.

* 値の合計を変数メモリに保存してから、 ℝ または ^{Δlpha}と変数メモリを押すことによって、値を呼び出して使用することができます。

度分秒(60進数)計算

度(時間)、分、秒キーを用いることによって、60進(60進法表記法)計算を実行したり、60進数を10進数に変換できます。

度分秒↔小数点

例	操作	表示(下の行)
86°37' 34.2" ÷ 0.7 =	86 • • • 37 • • • 34.2 • • •	
123°45'6''	÷ 0.7 =	123°45°6°.
123°45'6" →123.7516667	○ <i>и</i>	123.7516667
2.3456 → 2°20'44"	2.3456 = Shift *°'''	2°20°44.16

科学定数

C-Value)

語

₩

Ш

本機は合計79の科学定数を内蔵しており、 Genuel を押すことによって、 定数選択メニューに入る(またはメニューから出る)ことができま す。以下の表示が現れます。

- ↑ または ↓ を押すことによって、次または前の定数メニュー選 択ページに移動することができます。
- ・定数を選択する場合は、← または → を押します。選択カーソル が左または右にシフトして定数記号に下線を付け、同時に、下線を 付けられた定数記号の値が下の表示行に示されます。
- ・ こを押すと、下線を付けられた定数記号が選択されます。
- ・ 選択カーソルが 00 に下線を付けているときに、定数番号(P21~23参照)を入力して = を押すと、即座に定数値を得ることができます。

操作	表示
_{C-Value} (メニュー選択ページ)	← <u>00</u> m _p m _n m _e
↓ →	• 0.4 m _µ a_0 h 1.8835314 $\times 10^{-28}$
(選択確定)	m _μ 0.
+ C-Value 35	
	m _μ + g 9.80665

科学定数表

番号	定数	記号	値	単位
1.	陽子質量	m _p	1.67262171 x10 ⁻²⁷	kg
2.	中性子質量	m _n	1.67492728 x10 ⁻²⁷	kg
3.	電子質量	m _e	9.1093826x10 ⁻³¹	kg
4.	中間子質量	m _µ	1.8835314x10 ⁻²⁸	kg
5.	ボーア半径 α / 4πR ∞	a ₀	0.5291772108x10 ⁻¹⁰	m
6.	プランク定数	h	6.6260693 x10 ⁻³⁴	Js
7.	核磁子 e $\hbar/2m_p$	μ_{N}	5.05078343 x10 ⁻²⁷	J T ⁻¹
8.	ボーア磁子 e \hbar / 2m $_{ m e}$	μ_{B}	927.400949 x10 ⁻²⁶	J T ⁻¹
9.	h / 2 π	ħ	1.05457168 x10 ⁻³⁴	Js
10.	微細構造定数	α	7.297352568x10 ⁻³	
	$e^2/4\pi\epsilon_0 hc$			
11.	古典電子半径 $\alpha^2 a_0$	r _e	2.817940325 x10 ⁻¹⁵	m
12.	コンプトン波長 h/m _e c	λc	2.426310238 x10 ⁻¹²	m
13.	陽子磁気回転比 $2\mu_p/\hbar$	γ _p	2.67522205 x10 ⁸	s ⁻¹ T ⁻¹
14.	陽子コンプトン波長 <i>h</i> /m _p c	λ _{c,p}	1.3214098555 x10 ⁻¹⁵	m
15.	中性子コンプトン波長 <i>h</i> /m _n c	λ _{c,n}	1.3195909067x10 ⁻¹⁵	m
16.	リュードベリ定数 α ² m _e c/2 <i>h</i>	R∞	10973731.568525	m ⁻¹
17.	(統一)原子質量単位	u	1.66053886 x10 ⁻²⁷	kg
18.	陽子磁気モーメント	μ _p	1.41060671x10 ⁻²⁶	J T ⁻¹
19.	電子磁気モーメント	μ _e	-928.476412 x10 ⁻²⁶	J T ⁻¹
20.	中性子磁気モーメント	μ _n	-0.96623645 x10 ⁻²⁶	J T ⁻¹
21.	中間子磁気モーメント	μμ	-4.49044799 x10 ⁻²⁶	J T ⁻¹
22.	ファラデー定数 N _A e	F	96485.3383	C mol ⁻¹
23.	素電荷	е	1.60217653x10 ⁻¹⁹	С
24.	アボガドロ定数	NA	6.0221415x10 ²³	mol ⁻¹
25.	ボルツマン定数 R/N _A	k	1.3806505 x10 ⁻²³	J K ⁻¹
26.	理想気体のモル体積 RT/p	Vm	22.413996 x10 ⁻³	m ³ mol ⁻¹
	T=273.15 K, p=101.325 kPa			
27.	モル気体定数	R	8.314472	J mol ⁻¹ K ⁻¹
28.	真空中の光速度	c ₀	299792458	m s ⁻¹
29.	第1放射定数 $2\pi hc^2$	c ₁	3.74177138x10 ⁻¹⁶	W m ²
30.	第2放射定数 hc/k	c ₂	1.4387752 x10 ⁻²	m K

番号	定数	記号	值	単位	
31.	シュテファン・ボルツマン定数	σ	5.670400x10 ⁻⁸	W m ⁻² K ⁻⁴	言語
32.	真空の誘電率 1/μ ₀ c ²	ε ₀	8.854187817 x 10 ⁻¹²	F m ⁻¹	₩
33.	磁気定数	μ ₀	1.2566370614x10 ⁻⁶	N A ⁻²	Ш
34.	磁束量子 h/2e	Φ_0	2.06783372 x10 ⁻¹⁵	Wb	
35.	標準重力加速度	g	9.80665	m s⁻²	
36.	コンダクタンス量子 2e ² / h	G ₀	7.748091733x10 ⁻⁵	S	
37.	真空の特性インピーダンス √μ ₀ / ε ₀ = μ ₀ c	Z ₀	376.730313461	Ω	
38.	摂氏温度	t	273.15		
39.	ニュートン重力定数	G	6.6742 x10 ⁻¹¹	m ³ kg ⁻¹ s ⁻²	
40.	標準気圧	atm	1.01325		
41.	陽子G係数 2μp/μN	g _p	5.585694701		
42.	λ _{c,n} /2π	λ _{c,n}	0.2100194157 x10 ⁻¹⁵	m	
43.	プランク長 $\hbar/m_{ m P}$ c=(\hbar G $/c^3$) ^{1/2}	Ι _Ρ	1.616024x10 ⁻³⁵	m	
44.	プランク時 I _P / c=(\hbar G / c ⁵) ^{1/2}	t _P	5.39121 x10 ⁻⁴⁴	s	
45.	プランク質量 (^ҟ c / G) ^{1/2}	m _P	2.17645 x10 ⁻⁸	kg	
46.	原子質量定数	m _u	1.66053886 x10 ⁻²⁷	kg	
47.	電子ボルト (e / C)J	eV	1.60217653 x10 ⁻¹⁹	J	
48.	モルプランク定数	N _A h	3.990312716x10 ⁻¹⁰	J s mol⁻¹	
49.	ウィーン変位法則定数	b	2.8977685 x10 ⁻³	m K	
50.	SIの格子定数(真空中、22.5℃)	а	543.102122 x10 ⁻¹²	m	
51.	ハートリーエネルギー $e^2/4\pi\epsilon_0 a_0$	Eh	4.35974417 x10 ⁻¹⁸	J	
52.	ロシュミット定数 N _A / Vm	n ₀	2.6867773 x10 ²⁵	m⁻³	
53.	コンダクタンス量子の逆数	G ₀ -1	12906.403725	Ω	
54.	ジョセフソン定数 2e / h	KJ	483597.879 x10 ⁹	Hz V ⁻¹	
55.	フォンクリッチング定数 h / e ²	R _K	25812.807449	Ω	
56.	λ _c /2π	λ _c	386.1592678 x10 ⁻¹⁵	m	
57.	トムソン断面 (8π/3)r ² e	σe	0.665245873 x10 ⁻²⁸	m ²	
58.	電子磁気モーメント異常 μ _e / μ _B -1	a _e	1.1596521859 x10 ⁻³		
59.	電子G係数 2(1+ a _e)	g _e	-2.0023193043718		
60.	電子磁気回転比 2 μ _e / <i>ҟ</i>	γe	1.76085974 x10 ¹¹	s ⁻¹ T ⁻¹	
61.	中間子磁気モーメント異常	a _µ	1.16591981 x10 ⁻³		
62.	中間子G係数 2(1+ a _µ)	gμ	-2.0023318396		

_

番号	定数	記号	值	単位
63.	中間子コンプトン波長 h / m _µ c	λ _{c,μ}	11.73444105 x10 ⁻¹⁵	m
64.	$\lambda_{c,\mu}/2\pi$	λ _{c,μ}	1.867594298 x10 ⁻¹⁵	m
65.	タウコンプトン波長 h/m _τ c	λ _{c, τ}	0.69772 x10 ⁻¹⁵	m
66.	λ _{c,τ} /2π	λ _{c,τ}	0.111046 x10 ⁻¹⁵	m
67.	タウ質量	m τ	3.16777 x10 ⁻²⁷	kg
68.	λ _{c,p} /2π	λ _{c,p}	0.2103089104 x10 ⁻¹⁵	m
69.	シールド陽子磁気モーメント (H ₂ O、球、25°C)	μ' _ρ	1.41057047 x10 ⁻²⁶	J T ⁻¹
70.	中性子G係数 2µn/µN	9 _n	-3.82608546	
71.	中性子磁気回転比 2 µ n / <i>ћ</i>	γ'n	1.83247183 x10 ⁸	s ⁻¹ T ⁻¹
72.	重陽子質量	m _d	3.34358335 x10 ⁻²⁷	kg
73.	重陽子磁気モーメント	μ _d	0.433073482 x10 ⁻²⁶	J T ⁻¹
74.	エリオン質量	m _h	5.00641214 x10 ⁻²⁷	kg
75.	シールドエリオン磁気モーメント (気体、球、25℃)	μ'n	-1.074553024 x10 ⁻²⁶	J T ⁻¹
76.	シールドエリオン磁気回転比 2 μ ' _h / <i>ħ</i> (気体、球、25°C)	γ'n	2.03789470 x10 ⁸	s ⁻¹ T ⁻¹
77.	アルファ粒子質量	mα	6.6446565 x10 ⁻²⁷	kg
78.	シールド陽子磁気回転比 2 μ ' _p / <i>ћ</i> (H2O、球、25°C)	γ'p	2.67515333 x10 ⁸	s ⁻¹ T ⁻¹
79.	陽子磁気シールド補正 1-μ ' _p / μ _p (H₂O、球、25℃)	σ'n	25.689 x10 ⁻⁶	

! 定数値は端数を丸めることができません。

出典: Peter J. Mohr and Barry N. Taylor「CODATA 基礎物理定数推 奨値」(2002)、2004年にアーカイバルジャーナルに掲載

単位換算

本機は170種類の単位換算を内蔵しており、ある単位の数値を別の単位の数値に変換することができます。

(CONVT)

語

₩

Ш

- ・ 34の変換コマンドを含んだ7つのカテゴリーページ(距離、面積、 温度、容積、重量、エネルギー、圧力)があり、↑または↓を押す ことによって、カテゴリー選択ページを変更することができます。
- カテゴリーページでは、←または →を押すことによって、選択カ ーソルを左または右にシフトすることができます。

ページ	記号	単位
1	feet	フィート
1	m	メートル
1	mil	ミル
1	mm	ミリメートル
1	in	インチ
1	cm	センチメートル
1	yd	ヤード
1	mile	マイル
1	km	キロメートル
2	ft ²	平方フィート
2	yd ²	平方ヤード
2	m ²	平方メートル
2	mile ²	平方マイル
2	km ²	平方キロメートル
2	hectares	ヘクタール
2	acres	エーカー
3	°F	華氏
3	Oo	摂氏
4	gal	ガロン(英国)
4	liter	リットル
4	B.gal	ガロン(米国)
4	pint	パイント
4	fl.oz	液量オンス(米国)
5	Tr.oz	トロイオンス
5	oz	オンス
5	lb	ポンド
5	Kg	キログラム
5	g	グラム
6	J	ジュール
6	cal.f	カロリー
7	atm	標準気圧
7	Кра	キロパスカル
7	mmHg	水銀柱ミリメートル
7	cmH ₂ O	水センチメートル

カテゴリー選択ページ内で @wg キーを押すと、即座に計算モードに戻ることができます。ただし、換算元の単位を選択した後は、↑、↓、 @wg キーは無効になります。

例: 変換 10 + (5 ft² → m²) = 10.4645152

操作	表示
10 (+) 5 ᡂ (メニュー選択ページ)	$ \bullet \underline{\text{feet}} m \text{ mil} \qquad \xrightarrow{\bullet} 0. $
↓ = (選択 ft ² 確定)	$ ft^2 yd^2 m^2 $ 5.
→ → = (m ² に変換する値を確認)	$10+5ft^2 \rightarrow m^2 _ 0.$
=	$10+5ft^2 \rightarrow m^2_{-10.4645152}$

! 変換結果がオーバーフローである場合は、下の行に[-E-]が表示されます。 こを押してオーバーフロー値を選択することはできませんが、以下のシナリオが有効です。

シナリオA-→または ←を押して他の変換値の選択を継続 する。 シナリオB- ៚で画面をクリアし、選択から出る。 シナリオC- ៚ を押して前の計算画面に戻る。

工学表示計算

ENG 4ENG

^{▶○●●} ← ① ① が押されて工学表示がオンになっている場合には、 以下の9つの記号を使用することができ、ディスプレイに[Eng]が表 示されます。

操作	値	単位
Alpha k	Kilo	10 ³
Alpha M	Mega	10 ⁶
G G	Giga	10 ⁹
C T	Tera	10 ¹²
^{Alpha} M	Milli	10 ⁻³
$\stackrel{Alpha}{\bigcirc} \mu$	Micro	10 ⁻⁶
^{Alpha} ∩	Nano	10 ⁻⁹
^{Alpha} p	Pico	10 ⁻¹²
Alpha f	Femto	10 ⁻¹⁵

例: 0.0007962秒をナノ秒に変換= 79620000 x 10-09

操作	表示(上の行)		表示(下の行)	話して
0 • 0007962 =	0.0007962	μ 🔺	796.2	
ENG	0.0007962	n 🔺	796200.	

例: 0.128グラム+9.3キログラム=9300.128グラム

0 • 128 + 9 • 3			
^{Alpha} k ≡	0.128 + 9.3k	k	9.300128

小数点以下桁数指定、有効桁数指定、および内部数値丸め ^{™™} ← ← を押して以下の選択画面を表示することによって、小数 点以下の桁数、有効桁数、指数表示基準を変更することができます。

- ①(Fix:小数点以下桁数固定): 表示部に[Fix 0~9?]が現れます。
 ② ~ ③ を押すことによって、
 小数点以下の桁数を指定することができます。
- ②(Sci:有効桁数指定)
 : 表示部に[Sci0~9?]が現れます。
 ③~9を押すことによって、
 有効桁数を指定することができます。
- ③(Norm:標準表示)
 : 表示部に[Norm1~2?]が現れます。①または②を押すことによって、指数表示方法を指定することができます。
 - Norm 1: 桁数が10を越える整数値と小数点以下の桁数が 2 を 越える10進値に対して、指数表示が自動的に用いら れます。
 - Norm 2: 桁数が10を越える整数値と小数点以下の桁数が <u>9</u>を 越える10進値に対して、指数表示が自動的に用いら れます。
- ・設定の解除についてはP14をご参照ください。
- [№]□□(内部数値丸め):数値や式の演算結果を小数化して、現在指定 されている表示桁数設定(Fix, Sci, Norm)に 沿って有効桁で四捨五入します。

例: 57 ÷ 7 x 20 = ??	操作	表示(下の行)
初期設定 小数点以下4桁を指定 (内部計算は16桁を継続)	$57 \div 7 \times 20 =$ $\stackrel{\text{MODE}}{\longrightarrow} 4 \leftarrow 1 4$ $57 \div 7 =$ $\times 20 =$	162.8571429 162.8571 8.1429 162.8571
小数点以下4桁指定の状態で 内部数値丸めを実行	$57 \div 7 =$ Shift round × 20 =	8.1429 162.8580
6桁科学指数表示で表示	^{MODE} ← ← 2 6	1.62858 ×10 ⁰²
1)を押して小数点以下指定 および有効桁指定を解除する ことによる表示方法	MODE ← ← 3 1	162.858

関数計算

■ 関数計算を行う場合は、^{MODE} ① を押してCOMPモードにします。
 ■ 計算中には、メッセージ[PROCESSING]が表示されます。

■ *π* = 3.14159265359で計算されます。

二乗、ルート、三乗、三乗根、べき乗、べき乗根、逆数、π

x² 二乗 √ ルート

- x^{*} 三乗 ^{*}□ 三乗根 へ べき乗 ^{*}□ べき乗根 ざ 逆数 ^E パイ

例: $(\sqrt{-2^2 + 5^3}) \times \pi = 35.68163348$

操作	表示(上の行)	表示(下の行)
$(\checkmark ((-) 2) x^{2})$ $+ 5 \overset{\text{shift}}{\longrightarrow} x^{3})) \overset{\text{shift}}{\longrightarrow} \pi$ $=$	$(\sqrt{(-2)^2 + 5^3})\pi$	35.68163348

例: $(\sqrt[3]{2^6} + \sqrt[5]{243})^{-1} = 0.142857142$

操作	表示(上の行)	表示(下の行)
$() \stackrel{\text{Shift}}{\bigcirc} \stackrel{\sqrt[3]{}}{\frown} 2 \land 6 + 5 \stackrel{\text{Shift}}{\bigcirc}$		
\sim 243) \sim \sim =	(³ √2^6 + 5 [×] √24	0.142857142

角度単位変換

本機の初期設定時の角度単位設定は"Degree"です。"Radian"または "Grade"に変換する必要がある場合は、セットアップ画面が表示され るまで ^{™™} を押してください。

変更したい角度単位に対応する数字キー 1)、 2)、 3)を押して ください。それに応じて、D、 R、 Gインジケータが表示され ます。

"Degree"、"Radian"、"Grade"の間で角度単位を変換する場合は、 ^{Shift} DRG▶を押してください。以下の表示メニューが現れます。

 ①、②、③を押すと、表示されている値が選択した角度単位 に変換されます。変換後、他の角度単位で表示したい場合は、○○○
 ← ← ← で切り替えます。

例: 180度をラジアンとグレードに変換 (180° = ^{πRad} = 200^{Gra})

操作	表示(上の行)	表示(下の行)
MODE → → → 2 (ラジアンモード)	R	
180 ^{Shift} □ □ □ □ □ □	180	3.141592654
^{MODE} ← ← ←3(グレードモード)	G	
Ξ	180 [□]	200.

三角関数

(sin) (cos) (tan) sin^{-1} cos^{-1} tan^{-1} (hyp)

■ 三角関数(双曲線計算を除く)を使用する前に、 ^{Mobe} で適切な角 度単位(Deg/Rad/Gra)を選択してください。

■ 90 °= $\frac{\pi}{2}$ ラジアン = 100 グレード

三角関数 (sin/cos/tan) と逆三角関数(sin⁻¹/ cos⁻¹/ tan⁻¹)

例	操作	表示(下の行)
ディグリー(度)モード		0.
sin 53° 22' 12" = 0.802505182	sin 53 ••• 22 ••• 12 •••	0.802505182
	=	
cosec x = 1/sinx	() $\sin 45$ () $\sin x^{-1}$	1.414213562
cosec 45° = 1.414213562	=	
tan ⁻¹ (5/6) = 39.80557109°	Shift \tan^{-1} ($5 \div 6 =$	39.80557109
ラジアンモード	MODE ← ← ← 2 ON/C	0.
$\cos(\pi/6)^{\text{Rad}} = 0.866025403$	$\begin{array}{ cos cos cos cos cos cos cos cos cos cos$	0.866025403
0.785398163	$ \overset{\text{Shift}}{\bigcirc} \overset{\cos^{\cdot 1}}{\frown} (1 \div \checkmark 2) $	0.785398163
$\cos^{-1}\sqrt{2} = 0.25 \pi$ (Rad)	$= Ans \div Shift \pi =$	0.25

双曲線関数 (sinh/cosh/tanh) と逆双曲線関数(sinh⁻¹/ cosh⁻¹/ tanh⁻¹)

例	操作	表示(下の行)
sinh 2.5 – cosh 2.5 =	hyp sin 2.5 — hyp cos	
-0.082084998	2.5 =	-0.082084998
cosh ⁻¹ 45 = 4.499686191	hyp $\stackrel{\text{Shift}}{\frown}$ cos 45 =	4.499686191

対数、自然対数、逆対数、Logab

例	操作	表示(下の行)
log 255 + ln 3 = 3.505152469	log 255 + In 3 =	3.505152469
e ⁻³ + 10 ^{1.2} = 15.89871899	Shift e^x (-) 3 + Shift 10^x	
	1 • 2 =	15.89871899
log ₃ 81 – log 1 = 4	$ \bigcirc^{Alpha} {}^{log_{a^{b}}} 3 ? 81) - $	
	log 1 =	4.

座標変換	Pol(Rec(uda
 ■ 極座標では、 - 180°< θ ≤ 180°の範囲内でθを計算 ことができます。(ラジアンおよびグレードと同じ) ■ 変換後、演算結果は自動的に変数メモリEとFに割り す。 	[し表え 当てら	示する れま	日本語

例	操作	表示(下の行)
直交座標 (x =1, y = √3)	$ \overset{\text{Shift Pol}(}{\bigcirc} 1 $	
ディグリー (度)モードで	Ξ	2.
極座標(r,θ)を求める		60.
		2.

Shift Rec(□ : 極座標 (r,θ)を直交座標 (x, y)に変換する場合は、RCL □ を押してxの値を表示し、RCL □ を押してyの値を 表示します。

例	操作	表示(下の行)
極座標(r = 2 , θ =60 °)	Shift Rec($2, 0, 60 =$	1.
ディグリー(度)モードで	RCL $\stackrel{F}{=}$	1.732050808
直交座標(x, y)を求める	RCL $\stackrel{E}{=}$	1.

! 座標変換計算で

・ が抜けていると、[Syntax ERROR]となります。

複素数計算

直交座標形式 (z=a+bi) または極座標形式 (r∠θ) で複素数を表すこ とができます。"a"は実数部、"bi"は虚数部 (iは - 1の平方根 - 1に 等しい虚数単位)、"r"は絶対値、"θ"は複素数の偏角です。

複素数計算を行う場合

- ^{™™} 2 を押してCPLXモードにしてください。
- 現在の角度単位設定(Deg, Rad, Grad)をチェックしてください。
- 演算結果に複素数があると、R⇔Iインジケータが表示されます。 ^{bhit} [®]⇔ を押して演算結果表示を切り換えてください。
- [i] アイコンは、表示演算結果が虚数部であることを表しています。[∠] アイコンは、表示値が偏角値 θ であることを表しています。
 虚数はリプレイメモリ容量をすべて使います。

複素数計算結果の表示

▶ ← 1 → を押してください。以下の表示オプションが現れます。

以下を押すことによって、複素数計算結果表示を設定することがで きます。

1: 直交座標形式(デフォルト設定)

2 : 極座標形式 ([r ∠θ] 表示インジケータがオンになります)

例: (12+3i) - (3+1i) = 9 + 2i = 9.219544457 (r) $\angle 12.52880771$ (θ)

操作(角度単位:度)	表示(上の行)	表示(下の行)
$(12 + 3 \stackrel{\text{Shift}}{\longrightarrow} i) -$ $(3 + \stackrel{\text{Shift}}{\longrightarrow} i =$ $\stackrel{\text{Shift}}{\longrightarrow} i =$	(12+3i)-(3+i ▲ (12+3i)-(3+i ▲	9. 2.i
MODE ← 1 → 2 (表示値変更) Shift Re ↔ Im	(12+3i)-(3+i ^{r∠θ R} ↔I (12+3i)-(3+i ^{r∠θ R} ↔I	∠ 12.52880771 9.219544457

直交座標形式 ↔ 極座標形式変換

^{Shift} └── を押すと、直交座標形式複素数が極座標形式に変換されます。 ^{Shift} └── を押すと、極座標形式複素数が直交座標形式に変換に変換されます。

例: $3 + 4i = 5 \angle 53.13010235$

操作(角度単位:度)	表示(上の行)	表示(下の行)
$3 + 4 \stackrel{\text{Shift}}{\frown} \stackrel{i}{\frown} \stackrel{\text{Shift}}{\frown} \stackrel{\flat r 2 \theta}{\frown} =$	$3 + 4i > r \angle \theta$	5
Shift Re⇔lm	$3 + 4j > r \angle \theta$	∠ 53.13010235

例: $\sqrt{2} \angle 45 = 1 + i$

操作(角度単位:度)	表示(上の行)	表示(下の行)	ころ
\checkmark 2 \bigcirc 145 \odot 145 \odot 145 \bigcirc 145 \odot 145 \bigcirc 145 \odot 145	√2∠45>a+bi в	1.	
Shift Re⇔lm	√2∠45>a+bi ^к ⊶ ^I	1. <i>i</i>	

絶対値と偏角の計算

直交座標形式複素数の場合、 $\overset{\text{shift}}{\bigcirc}$ $\overset{\text{bs}}{\bigcirc}$ または $\overset{\text{shift}}{\bigcirc}$ によって、対応 する絶対値 (r) または偏角 (θ) を計算することができます。

例: 複素数が6+8iの場合の絶対値(r)と偏角(θ)は

操作(角度単位:度)	表示(上の行)	表示(下の行)
$ \overset{\text{Shift Abs}}{\frown} (6 + 8 \overset{\text{Shift } i}{\frown} = $	Abs (6+8i 🔺	10.
→ Shift Arg =	arg (6+8i 🔺	53.13010235

複素数の共役

複素数がz = a + biである場合、この複素数の共役値はz = a - biとな ります。

例:3+4*i*の共役は3-4*i*

操作(角度単位:度)	表示(上の行)	表示(下の行)
$ \bigcirc \ \ \bigcirc \ \ \bigcirc \ \ \bigcirc \ \ \bigcirc \ \ $	Conjg (3+4i ▲	3.
Shift _{Re⇔lm}	Conjg (3+4i ▲	-4. <i>i</i>

n進計算と論理演算

- 10進計算(base 10)、16進計算(base 16)、2進計算(base 2)、
 8進計算(base 8)、論理演算を行う場合は、^{MODE} 2 を押してBASE-nモードにしてください。
- 初期設定時の基数は、[d]表示インジケータの付いた10進です。
- BASE-Nで個別の基数を選択する場合は、●10進 [d]、●16進 [H]、●2進 [b]、●8進 [o]を押してください。
 ● キーによって、論理演算を行うことができます。論理演算に
- [▶] キーによって、論理演算を行うことができます。論理演算には、論理積(And)、論理和(Or)、排他的論理和の否定(Xnor)、排他的論理和(Xor)、否定(Not)、負数(Neg)があります。
- 2進または8進計算結果が8桁を超える場合は、演算結果に次のブロックがあることを知らせるために[1b] / [1o]が表示されます。 [Blk]を押し続けると、演算結果ブロックを折り返して見ることができます。
- 科学関数はすべて使用できず、小数点や指数の付いた値も入力できません。

2進計算 💾

例: 10101011 + 1100 – 1001 x 101 ÷ 10 = 10100001 (2進モードで)

操作	表示(上の行)	表示(下の行)
10101011 + 1100 - 1001 ×		
101 ÷ 10 =	10101011+110	10100001. ^b

8進計算 📛

例: 645 + 321 – 23 x 7 ÷ 2 = 1064 (8進モードで)

645 + 321 - 23 × 7 ÷		
2 =	645+321-23x7	1064. ^o

16進計算 📛

例: (77A6C + D9) x B ÷ F = 57C87 (16進モードで)

(77A6C + D9) x B	57C87. ^H

n進変換 [□]→ [□]→ [□]→ [□]

ост 12345 (+) ^{DHBO} DHBO DHBO 3 101		
=	12345+b101	12352. °
HEX	12345+b101	14EA. ^H
BIN	12345+b101	11101010. ^{1b}
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	12345+b101	10100. ^{2b}
Blk	12345+b101	11101010. ^{1b}

論理演算 ──

例(16進モード)	操作	表示(下の行)
789ABC Xnor 147258		
	3 147258 =	FF93171b. ^H
Ans Or 789ABC	Ans DHB0 2 789 A	
		FFFb9FbF. ^H
Neg 789ABC	DHBO DHBO 3 789 A	
		FF876544. ^H

! 基数の許容入力範囲にご注意ください(10ページ)。

統計計算 [SD] [REG]

^{MODE} ③ を押して標準偏差モードにすると、[SD]インジケータが 点灯します。 💮 💮 1 を押すと、回帰モード選択メニューに Ш 入ることができます。[REG]インジケータがオンになります。

語 本

- 開始前に、必ず Shift □ □ を押して統計メモリをクリアし てください。
- データ入力を行います(注意事項!)
 - SDモードでは、□□□を押して表示データを保存してください。 Data Data と押すと、同じデータが2回入力されます。
 - REGモードでは、xデータとyデータをx-data , y-data 回回の形 で保存してください。
 Data Dataと押すと、同じデータが2回入力 されます。
 - ・同一データを複数個入力する場合には ^{Shift} ;
 □ を用いてくだ さい。例えば、SDモードで20を8回入力する場合には、20 chift
 - ・ □□□□ を押して入力を登録するたびに、その時点までのデータ入
 力数が表示部に1回表示されます(n=入力データ数)。
 - ・データ入力中または入力後に↑または↓キーを押すと、データ 値(x)とデータ回数(Freq)を表示させることができます。 上記の例では、↓ を押すと[x1 = 20]が表示され、↓ を押すと [Freq 1 = 8]が表示されます。
 - 保存されているデータを編集する場合は、▲または↓キーを押 しデータ値(x)を表示させ、新しい値を入力してください。 その後、(=)を押して編集を確定してください。ただし、(=) の代わりに
 Parta を押すと、新しいデータ値として保存されま す。
 - ◆ ★または ↓ キーを押しデータ値(x)を表示させた後、 を押すことによってデータを削除することができます。削除さ れたデータに続くデータの順序は自動的にシフトされます。
 - • (m/c) を押すとデータ値と回数の表示が終了し、他の計算操作を
 行うことができます。
 - 入力データは計算メモリに保存されますが、メモリがフルにな ると、[Data Full]が表示され、入力や計算が行えなくなります。 この場合は^(m/g)または⁽⁼⁾キーを押して、オプション [EditOFF] または[ESC] を表示させます。

Edit OFF	メモリに保存することなくデータの入力を続けま
(<u>1</u> を押す) :	す。入力したデータの表示や編集は行えません。
ESC	データをメモリに登録することなくデータ入力を
(2 を押す) :	終了します。

- 他のモードや回帰形式 (Lin, Log, Exp, Pwr, Inv, Quad)への変 更後、入力データはクリアされます。
- データ入力終了後に、統計値の呼び出しや計算を行うことができ ます。

標準偏差

- ^{MODE} 3 を押してSDモードにしてください。
 開始前に、必ず ^{Shift} ^{CH} 1 = を押して統計メモリをクリアし てください。
- データをすべて入力した後に、以下の統計値を呼び出すことがで きます。

値	記号	操作
サンプル(x)の2乗の和	Σx^2	Shift S-SUM 1
サンプル(x)の総和	Σx	Shift S-SUM 2
データサンプル数	n	Shift S-SUM 3
サンプル(x)の平均	x	Shift S-VAR 1
サンプル(x)の母標準偏差	Xσn	Shift S-VAR 2
サンプル(x)の標本標準偏差	Χσn-1	Shift S-VAR 3

例: SDモードでのデータ75、85、90、77、77の Σx^2 、 Σx 、n、 \overline{x} 、 Xon、Xon-1、の計算

操作	表示(上の行)	表示(下の行)
Shift CLR 1 = (Sctの選択、統計メモリのクリア)	Stat clear	0.
75 Data 85 Data 90 Data 77 Shift ; 2 Data	n =	5.
Shift s-sum 1 =	Σx^2	32,808.
shift s-sum 2 =	ΣΧ	404.
Shift S-SUM 3 =	n	5.
Shift S-VAR 1 =	x	80.8
Shift S-VAR 2 =	Xσn	5.741080038
Shift S-VAR 3 =	Xσn-1	6.418722614

回帰計算

^{№ ™} 1 を押してREGモードにしてください。以下の画面 オプションが表示されます。

- (1)、(2)、(3)を押すことによって、以下の回帰を選択できます。
 - [Lin] = 直線回帰
 - [Log] = 対数回帰
 - [Exp] = 指数回帰

- 1、2、3を押すことによって、以下の回帰を選択できます。
- [Pwr] = べき乗回帰
- [Inv] = 逆数回帰
- [Quad] = 2次回帰
- 開始前に、必ず Shift CL 1 = を押して統計メモリをクリアしてください。
- データをx-data ・ y-data ^{Deta}の形で入力してください。同一デ ータを複数個入力する場合には^{Shift} : Dを用いてください。
- ↑または ↓ キーを押しデータを表示させた後、 ○ を押すことによって、データを削除することができます。
- 以下の統計値を呼び出して使用することができます。

值	記号	操作
サンプル (x) の2乗の和	Σx^2	Shift s-sum 1
サンプル(x)の総和	$\Sigma \mathbf{x}$	Shift s-sum 2
データサンプル数	n	Shift s-sum 3
サンプル (y) の2乗の和	Σy^2	Shift s-sum → 1
サンプル(y)の総和	Σу	$\stackrel{\text{Shift s-sum}}{\Box} \Rightarrow 2$
サンプル (x,y) の積の和	Σχγ	$\stackrel{\text{Shift s-SUM}}{\frown} \Rightarrow 3$
サンプル (x) の平均	x	Shift s-var
サンプル(x)の母標準偏差	xσn	Shift s-var 2
サンプル(x)の標本標準偏差	xσ _{n-1}	Shift s-var 3
サンプル(y)の平均	У	Shift s-var → 1
サンプル(y)の母標準偏差	yσn	$\stackrel{\text{Shift s-VAR}}{\Box} \Rightarrow 2$
サンプル(y)の標本標準偏差	yσ _{n-1}	$\stackrel{\text{Shift s-VAR}}{\Box} \Rightarrow 3$
回帰係数A	А	$ \overset{\text{Shift } \text{s-var}}{\bigcirc} \twoheadrightarrow \twoheadrightarrow 1 $
回帰係数B	В	$ \overset{\text{Shift } \text{S-VAR}}{\Box} \rightarrow \rightarrow 2 $

2次回帰以外			
相関係数C	С	$ \overset{\text{Shift } \text{s-var}}{\Box} \rightarrow \rightarrow 3 $	
xの回帰推定値	x	$ \overset{\text{Shift }}{\bigcirc} \overset{\text{s-var}}{\longrightarrow} \twoheadrightarrow \twoheadrightarrow 1 $	
yの回帰推定値	ŷ	$\stackrel{\text{Shift}}{\frown} \stackrel{\text{s-var}}{\bullet} \rightarrow \rightarrow 2$	
2次回帰のみ			
サンプル(x)の3乗の和	∑x ³	$ \overset{\text{Shift s-sum}}{\frown} \twoheadrightarrow \twoheadrightarrow 1 $	
サンプル(x²,y)の総和	∑x²y	$ \overset{\text{Shift s-sum}}{\bigcirc} \twoheadrightarrow \twoheadrightarrow 2 $	
サンプル(x)の4乗の和	Σx^4	$ \overset{\text{Shift}}{\bigcirc} \overset{\text{s-sum}}{\longrightarrow} \twoheadrightarrow 3 $	
回帰係数C	С	$ \overset{\text{Shift } \text{s-var}}{\Box} \twoheadrightarrow \twoheadrightarrow 3 $	
回帰推定值x ₁	λî ₁	$ \overset{\text{Shift } s\text{-var}}{\Box} \twoheadrightarrow \twoheadrightarrow \twoheadrightarrow 1 $	
回帰推定值x ₂	γ̂ ₂	$ \overset{\text{Shift } \text{s-var}}{\Box} \twoheadrightarrow \twoheadrightarrow \twoheadrightarrow 2 $	
回帰推定值y	ŷ	$ \overset{\text{shift}}{\bigcirc} \overset{\text{s-var}}{\longrightarrow} \twoheadrightarrow \twoheadrightarrow \twoheadrightarrow 3 $	

直線回帰

- ・ 直線回帰は次式に関するものです。
 y = A + Bx
- 例:以下の投資表で、投資と利益の線形回帰(回帰係数A、回帰 係数B)、相関係数、45(千単位)の投資での利益(%)、利 益180(%)での投資(千単位)を計算する。

投資(千単位)	利益(%)
20	120
30	126
40	130
50	136
60	141

操作	表示(上の行)	表示(下の行)	
MODE MODE 1 1 (線形回帰)		0.	三部
Shift CLR 1 = (統計メモリクリア)	Stat clear	0.	
20) 120 Data 30) 126 Data 40)			
130 Data 50 9 136 Data 60 9 141 Data	n =	5.	
Shift S-VAR ➡ ➡ 1 ☰ (係数A)	А	109.8	
Shift S-VAR ➡ ➡ 2 〓 (係数B)	В	0.52	
Shift S-VAR → → 3 = (相関係数)	r	0.998523984	
45 ^{Shift} S-VAR → → → 2 = (利益%)	45 ŷ	133.2	
180 Shift S-VAR ➡➡➡ 1 = (投資単位)	180 x	135	

対数回帰式、指数回帰式、べき乗回帰式、逆数回帰式

- 対数回帰 : y = A + Blnx
- 指数回帰 : y = Ae^{Bx} (Iny = InA + Bx)
- べき乗回帰: y = Ax^B (Iny = InA + BInx)
- 逆数回帰 : y = A+Bx⁻¹

2次回帰

- 2次回帰は次式に関するものです。
 - $y = A + Bx + Cx^2$
- 例:ABC社が広告費の有効性を調査し、以下のデータを得た。

広告費:x	有効性:y(%)
18	38
35	54
40	59
21	40
19	38

相関係数を計算します。回帰を用いて、広告費x = 30の場合の有 効性(yの値)を推定し、有効性y = 50の場合の広告費(xの値) を推定する。

操作	表示(上の行)	表示(下の行)
MODE MODE 1 ➡ 3 (2次回帰)		0.
Shift CLR 1 =	Stat clear	0.
18		
21 , 40 Data 19 , 38 Data	n =	5.
Shift s-VAR → → 1 = (係数A)	А	23.49058119
Shift S-VAR → → 2 = (係数B)	В	0.688165819
Shift s-VAR → → 3 = (係数C)	С	5.067334875x10 ⁻⁰³
30 ^{Shift} s-VAR → → → 3 = (x = 30の場合のŷ))	30 ŷ	48.69615715
50 ^{Shift} s-VAR → → → 1 = (y = 50の場合の \hat{x}_1)	$50 \widehat{x}_1$	31.30538226
50 ^{Shift} s-var → → → 2 = (y = 50の場合 x ₂)	50 x ₂	-167.1096731

分布計算

- 標準偏差(SD) または回帰(REG) モードでサンプルデータを 入力した後に、正規確率関数P(t)、Q(t)、R(t)の値を求めること ができます。
- t は正規分布を標準化した時の変数です。統計結果からtを求める ことができます。

- x : 正規分布内の任意数x : 平均値
- σn:母標準偏差
- Shift DISTR を押すと、以下の選択画面が表示されます。

Ρ(Q(R(\rightarrow t
1	2	3	4

1、2、3、4 を押すことによって、対応する計算を選 択できます。

P (t) : 所定ポイントa以下 の確率	$P(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-\frac{x^{2}}{2}} dx$	P(t)	日本語
Q (t) : 所定ポイントa以下 で平均以上の確率	Q(t) = $\frac{1}{\sqrt{2\pi}} \int_{0}^{a} e^{-\frac{x^{2}}{2}} dx$	Q(t)	
R (t) : 所定ポイントa以上 の確率	$R(t) = \frac{1}{\sqrt{2\pi}} \int_a^{+\infty} e^{-\frac{x^2}{2}} dx$	R(t)	

例: サンプルデータ20、43、26、46、20、43、26、19、20 で a = 26の標準化変量(t)と、そのときの正規分布のP(t)を 計算する。

操作	表示(上の行)	表示(下の行)
Mode Mode 11 (線形回帰)		0.
Shift CLR 1 =	Stat clear	0.
20 Data 43 Data 26 Data 46 Data 20 Data		
43 Data 26 Data 19 Data 23 Data 20 Data	n =	10.
$26 \bigcirc^{\text{Shift DISTR}} 4 =$	26 → t	-0.250603137
Shift DISTR 1 (-) 0 • 25) =	P(-0.25)	0.40129

順列、組合せ、階乗、乱数発生

- 順列 : nPr = <u>n!</u> (n-r)!
- 組合せ : nCr = <u>n!</u> r!(n-r)!
- 階乗 : x! = x(x-1)(x-2).....(2)(1)

例	操作	表示(下の行)
10P3	$10 \stackrel{\text{Shift nPr}}{\frown} 3 =$	720.
₅ C ₂	$5 \stackrel{\text{Shift nCr}}{\frown} 2 =$	10.
5!	$5 \stackrel{\text{Shift } x!}{\Box} \equiv$	120

乱数発生

Shift Rand : 0.000と0.999の間で乱数を発生させることができます。
Shift i-Rand : 2つの任意の正整数または0の間で乱数を発生させる ことができます。","で分けて数字入力を行ないます。

例: 0.000と0.999の間で乱数を発生させ、次に1~100の範囲から整数を発生させる。

操作	表示(上の行)	表示(下の行)
Shift Rand =	Rand	0.833*
\bigcirc 1 100 =	i~Rand(1,100	83.*

* 値はサンプルにすぎず、計算結果は毎回異なります。

この画面で、2つまたは3つの未知数を持つ連立1次方程式の解を 選択することができます。 ^{™™} または ⇒ を押すと、2次方程式と 3次方程式のオプションが表示されます。

方程式のタイプが選択されると、[EQN]インジケータが点灯します。2 つまたは3つの未知数を持つ連立1次方程式の解を指定すると、以下 の方程式解のサンプル画面が表示されます。 語

₩

Ш

(連立1次方程式解のサンプル表示)

- 2次方程式または3次方程式解では、係数名が"a"で始まります。
- 係数として複素数を入力することはできません。
- 指定方程式の最後の係数(2つの未知数を持つ連立1次方程式は "c2"、3つの未知数を持つ連立1次方程式は"d3"、2次方程式は "c"、3次方程式は"d")を入力した後に計算が始まり、方程式の 解が表示されます。

(連立1次方程式解のサンプル表示)

- ● を押すと入力画面に戻り、 ★または ↓キーで画面をスクロー ルすることによって、値の表示や編集を行うことができます。 その後最後の係数を表示して = を押すと再計算が行なわれ、解 が表示されます。
- 2次方程式または3次方程式では、変数名が"X1"で始まります。
- ↑ ↓ または = を押すと、別の解が表示されます。
- 係数入力画面に戻りたい場合は、(mvg)キーを押してください。

連立1次方程式

2つの未知数を持つ連立1次方程式:

$$a_1x + b_1y = c_1$$

 $a_2x + b_2y = c_2$

3つの未知数を持つ連立1次方程式:

 $a_1x + b_1y + c_1z = d_1$ $a_2x + b_2y + c_2z = d_2$ $a_3x + b_3y + c_3z = d_3$

例: 3つの未知数を持つ連立1次方程式を解く。

$$2x + 4y - 4z = 20$$

 $2x - 2y + 4z = 8$
 $5x - 2y - 2z = 20$

操作	表示(上の行)	表示(下の行)
Mode Mode 3	Unknowns?	2 3
3 (3つの未知数)	a1?	0.
2 = 4 = (-) 4 = 20 =	a2?	0.
2 = (-) 2 = 4 = 8 =	a3? 🔶	0.
5 = (-) 2 = (-) 2 = 20 =	x =	5.5
•	y = 🔶	3.
Ξ	Z = 🔺	0.75
◎	a1?	2.

2次方程式または3次方程式

2次方程式 : ax² + bx + c = 0

3次方程式 : $ax^3 + bx^2 + cx + d = 0$

例: 3次方程式5x³ + 2x² – 2x + 1 = 0

操作	表示(上の行)	表示(下の行)
\bigcirc \bigcirc \bigcirc \bigcirc $3 \Rightarrow$	← Degree?	2 3
3 (3次方程式)	a? 🗸	0.
5 = 2 = (-) 2 = 1 =	x1 =	-1.
▼	x2 = ^{R↔I}	0.3
Shift Re⇔lm	x2 = ^{R↔I}	0.331662479 <i>i</i>
Ξ	x3 =	0.3
Shift Re↔Im	x3 =	- 0.331662479 i

ソルブ機能

語

₩

Ш

例:高さが"h"で底面の半径が"r"の円錐。その体積は以下の式で表されます。

$$V = \frac{1}{3}\pi r^2 h \qquad \left(A = \frac{1}{3}\pi B^2 C \right)$$

変数"V"をA、変数"r"をB、変数"h"をCに置き換えて計算します。

半径が5cmで高さが20cmの場合の円錐体積を計算します。円錐の体積が200cm³で半径が2cmの場合の円錐高さを計算します。

操作	表示(上の行)	表示(下の行)
MODE 1		0.
Alpha A Alpha = (1 a b/c 3		
$\bigcirc \qquad \overset{\text{Shift}}{\bigcirc} \qquad \overset{\pi}{\frown} \qquad \overset{\text{Alpha}}{\frown} \qquad \overset{\text{B}}{\frown} \qquad \overset{x^2}{\bigcirc} \qquad \overset{\text{Alpha}}{\frown} \qquad \overset{\text{C}}{\frown} \qquad \overset{\text{Alpha}}{\frown} \qquad \overset{\text{C}}{\frown} \overset{\text{C}}{\bullet} $	A=(1_3) π B²C	0.
Shift Solve	A?	0.
▼	В?	0.
5 = (半径はB = 5cm)	C?	0.
20 = (高さはC = 20cm)	C?	20.
	A?	0.
Shift Solve	A =	523.5987756
(二) (新しい変数で計算)	Α?	523.5987756
200 = (体積はA = 200cm ³)	В?	5.
2 = (半径はB = 2cm)	C?	20.
Shift Solve	C =	47.74648293

- ! 式に等号(=)がない状態で解計算が行われた場合には、解がゼロ (0)として変換されます。
- ! 式を解くことができない場合には、[Solve ERROR]が表示されます。

数式一時登録機能

- 数式一時登録機能では、変数を含む最大79ステップまでの計算式 を保存することができます。式中の変数に特定の値を代入することで、演算結果を得ることができます。
- 計算式を入力して (ALC) を押すと、式中の変数に対する数値入力 を求める画面が表示されます。
- 数式一時登録機能を使用できるのは、COMPモードまたはCPLX モードのみです。

例: 方程式Y = 5x² - 2x + 1で、x = 2またはx = 7の場合のYの値を計 算する。

語

₩

Ш

操作	表示(上の行)	表示(下の行)
$-2 \overset{\text{Alpha}}{\frown} \overset{x}{\frown} + 1$	$Y = 5x^2 - 2x + 1$	0.
CALC	Х?	0.
5 =	$Y = 5x^2 - 2x + 1$	116.
(alc) 7 =	$Y = 5x^2 - 2x + 1$	232.

! 新しい計算を開始したり、他のモードにしたり、計算機の電源を オフにすると、 [CALC] 保存されている計算式はクリアされます。

■ 微分計算を行う場合は、 ^{MODE} 1 を押してCOMPモードにします。

- ・ 微分式は変数xを含んでいなければなりません。
- "a"は微分係数です。
- " ×"はxの変化区間です(計算精度)。
- 例: 関数f(x)=sin(3x + 30)に関して、点x、 x=10⁻⁸での導関数を求 める。

操作	表示(上の行)	表示(下の行)
$ \overset{\text{Shift } d/dx}{\bigcirc} \text{sin } (3 \overset{\text{Alpha}}{\bigcirc} \overset{\text{X}}{\frown} +) $		
30) , 10 , 1 exp (-) 8		
	d/dx(sin(3x	0.026179938

- ! 微分式では ×を省くことができ、計算機が自動的に ×に値を代 入します。
- ! xの数値が小さいほど、演算結果が正確になりますが、演算時間は長くかかります。
- ! 不連続な点やxの値の極端な変化は、演算結果が不正確になった りエラーをもたらすことがあります。
- ! 三角関数で微分計算を行う場合には、角度単位設定でラジアン (Rad)を選択してください。
- ! Log_ab、i–Rand、Rec、Pol 関数を微分計算に加えることはできま せん。
- ! 計算中には、メッセージ[PROCESSING]が表示されます。

積分計算

■ 積分計算を行う場合は、^{MODE} 1 を押してCOMPモードにします。

 $\int dx$

積分計算を行うためには、以下の形で式を入力してください。

[dx] 積分式 , a , b , n)

- ・積分式は変数xを持ちます。
- ・ "a"と"b"は定積分の積分範囲を規定します。
- ・ "n"はパーティション数です(N=2ⁿに相当)。

■ 本機の積分はシンプソンの公式に基づいた数値積分となります。 ∫_a^b f(x)dx, n = 2ⁿ, 1≤n≤9, n≠0

有効桁数が増えると、内部積分計算にかなりの時間がかかることがあります。場合によっては、計算の実行にかなりの時間をかけたにもかかわらず、計算結果の精度が低い場合もあります。特に有効桁が1未満の場合には、ERRORが発生することがあります。

例:以下の積分計算を行う。

$$\int_{2}^{3} (5x^4 + 3x^2 + 2x + 1) dx$$
, with n = 4.

操作	表示(上の行)	表示(下の行)
$\int dx 5 \stackrel{\text{Alpha}}{\frown} x \wedge 4 + 3 \stackrel{\text{Alpha}}{\frown}$		
$\overset{X}{\frown}$ \land 2 + 2 $\overset{Alpha}{\frown}$ + 1		
, 2, 3, 4) =	∫(5X^4+3X^2+	236.

- パーティション数は1~9整数の範囲で指定する必要があります。
 値がセットアップ区分範囲(N = 2ⁿ、n≠0、n=1~9整数)を外れていると、[Arg ERROR]が表示されます。
- ! パーティション数は省くことができ、代わりに計算機が自動的に 適切な値を代入します。
- ! nの数値が小さいほど、計算時間が短くなりますが、計算結果が比 較的不正確になります。一方、nの値が大きいほど、計算時間が長 くなり、計算結果がより正確になります。
- ! 三角関数で積分計算を行う場合には、角度単位設定でラジアン (Rad)を選択してください。
- ! Log_ab、i–Rand、Rec、Pol関数を積分計算に加えることはできま せん。
- ! 計算中には、メッセージ[PROCESSING]が表示されます。

語

₩

Ш

行列計算

■ ○ ○ ○ □ を押して行列モードにしてください。[MATX] インジケータが点灯します。

■ 行列計算を開始する前に、1つの行列または一度に最大3つの行列 (名前はA、B、C)を作成してください。

- 行列計算結果は、自動的に「MatAns」という行列計算専用のメ モリに保存されます。行列「MatAns」メモリを用いて、後で行 列計算を行うことができます。
- 行列計算では、最大2レベルの行列スタックが使用されることが あります。ただし、行列の2乗、3乗、逆行列では、1つのスタック のみ使用されます。

行列を作成する

- 1. ^{Shift Matx} 1 (Dim)を押して行列名(A、B、またはC)を指定してから、行列のサイズ(行数と列数)を指定してください。行列のサイズは最大3×3です。
- 2. 次に、行列要素インジケータ表示に従って行列の値(要素)を入 力してください。以下は行列要素インジケータの例です。

3. カーソルキーを用いて、行列要素の移動、閲覧、編集を行います。

4. 入力を終えたら、 [∞] を押して行列作成画面を終了させます。

行列要素を編集する

- 1. すでに行列メモリに登録済みの内容の編集を行なう場合は、 Marx 2 (Edit)を押してから、編集を行う行列A、B、またはCを指定 してください。対応する行列要素インジケータが表示されます。
- 2. 新しい値を入力し、 = を押して編集を確定してください。
- 3. 入力を終えたら、 🔤 を押して行列編集画面を終了させます。

行列の加算、減算、乗算

			1	2	3		9	8	7	
例:	MatA	=	4	5	6	, <i>MatB</i> =	6	5	4	, MatA x MatB=?
			7	8	9,		3	2	1	

操作	表示(上の行)	表示(下の行)
Shift MATX 11(行列A3x3)	MatA(mxn) m?	0.
3 = 3 = (行列 A 3 x 3)	MatA ₁₁	0.
1=2=3=4=5=6		
(三7) 三7) 三7) 三7) 三7) 三7) 三7) 三7) 三7) 三7)	MatA ₁₁	1.
Shift MATX 1 2 (行列 B 3 x 3)		
3 = 3 =	MatB ₁₁	0.
9=8=7=6=5=4		
=3=2=1=(要素入力)	MatB ₁₁	9.
ON/C Shift MATX 3	A B C Ans	1 2 3 4
1 🗙	MatA x	0.
Shift MATX 3 2	MatA x MatB	0.
	MatAns ₁₁	30.
➡(左、右、上、下キーを押		
して結果を表示する)	MatAns ₁₂	24.

! 加算、減算、乗算される行列は同じサイズでなければなりません。 サイズが異なる行列の加算、減算、乗算を行おうとすると、エラ ーが発生します。例えば、2×3行列と2×2行列の加算や減算を行 うことはできません。 行列のスカラー倍を求める

行列の各位置に単一値が掛けられ、同じサイズの行列がもたらされ ます。固定倍数による行列のスカラー倍を求める手順を以下に示し ています。 日本語

/ T ul		3	-2 `		/+ m	6	-4	
1列:	行列C=	-1	5	に2を掛ける。	<結果:	-2	10	>

操作	表示(上の行)	表示(下の行)
Shift MATX 1 3	MatC(mxn) m?	0.
2 = 2 = (行列C2×2)	MatC ₁₁	0.
3=(-)2=(-)1=5=		
(要素入力)	MatC ₁₁	3.
ON/C 2 × Shift MATX 3 3	2 x MatC	0.
(=) (2 x MatC)	MatAns ₁₁	6.
→	MatAns ₁₂	-4
→	MatAns ₂₁	-2
→	MatAns ₂₂	10.

行列の行列式の値を求める

正方行列の行列式を求める手順を以下に示しています。

操作	表示(上の行)	表示 (下の行)
Shift MATX 1 3 (Dim) 3 =		
3 三 (行列C3×3)	MatC ₁₁	0.
10 = (-) 5 = 3 = (-) 4		
= 9 = 2 = 1 = 7 =		
(-) 3 = (要素入力)	MatC ₁₁	10.
ON/C Shift MATX	Det Trn	1 2
1 Shift MATX 3 3 (DetMatC)	Det MatC	0.
Ξ	Det MatC	-471.

! 非正方行列の行列式の値を求めると、エラーが発生します。

行列を転置する

行と列の要素を転置する手順を以下に示しています。

	9	5 `			$\left(\right)$	G	0)
例 :行列B =	6	2	を転置する。	<結果:	9	0	0	>
	8	4			(5	2	4	J

操作	表示(上の行)	表示(下の行)
Shift MATX 1 2 (Dim) 3 =		
2 = (行列B3×2)	MatB ₁₁	0.
9=5=6=2=8=		
4 (三) (要素入力)	MatB ₁₁	9.
ON/C Shift MATX →	Det Trn	1 2
2 Shift MATX 3 2 (Trn MatB)	Trn MatB	0.
(三) (左、右、上、下キーを		
押して結果を表示する)	MatAns ₁₁	9.

正方行列の逆行列を求める 正方行列の逆行列を求める手順を以下に示しています。

例:行列C = $\begin{pmatrix} 8 & 2 \\ 3 & 6 \end{pmatrix}$ の逆行列を求める。 <結果:^{(0.142857142} -0.047619047 -0.071428571 0.19047619 >

操作	表示(上の行)	表示(下の行)
Shift MATX 1 3 (Dim) 2 =		
2 = (行列C2×2)	MatC ₁₁	0.
8 = 2 = 3 = 6 =		
(要素入力)	MatC ₁₁	8.
$\bigcirc N/C \bigcirc \bigcirc \bigcirc Inift MATX 3 3 \bigcirc $	MatC ⁻¹	0.
(MatC ⁻¹)	MatAns ₁₁	0.142857142
>	MatAns ₁₂	-0.047619047
+	MatAns ₂₁	-0.071428571
→	MatAns ₂₂	0.19047619

行列の要素の絶対値を求める 行列の要素の絶対値を求める手順を以下に示しています。

例:前例の逆行列の絶対値を求める。

			. Leier
操作	表示(上の行)	表示(下の行)	話して
Shift Abs Shift MATX 3 4	Abs MatAns	0.	
=	MatAns ₁₁	0.142857142	
⇒	MatAns ₁₂	0.047619047	
⇒	MatAns ₂₁	0.071428571	
⇒	MatAns ₂₂	0.19047619	

ベクトル計算

- ^{MODE} ^{MODE} ^{MODE} ② を押してベクトルモードにしてください。 [VCTR]インジケータが点灯します。
- ベクトル計算を開始する前に、1つ以上のベクトル(名前はA、 B、C)を作成します(一度に最大で3つのベクトル)。
- ベクトル計算結果は、自動的に「VctAns」というベクトル計算専用のメモリに保存されます。ベクトル「VctAns」メモリを用いて、 後でベクトル計算を行うことができます。

ベクトルを作成する

- 1. Oim)を押してベクトル名(A、B、またはC)を指定してから、ベクトルの次元を指定してください。
- 次に、ベクトル要素インジケータ表示に従ってベクトルの値(要素)を入力してください。以下はベクトル要素インジケータの例です。

- カーソルキーを用いて、ベクトル要素の移動、閲覧、編集を行います。
- 4. 入力を終えたら、 ┉ を押してベクトル作成画面を終了させます。

ベクトル要素を編集する

- すでにベクトルメモリに登録済みの内容の編集を行なう場合は、
 *□
 ② (Edit)を押してから、編集を行うベクトルA、B、または Cを指定してください。対応するベクトル要素インジケータが表 示されます。
- 2. 新しい値を入力し、(=)を押して編集を確定してください。
- 3. 入力を終えたら、ovc を押してベクトル編集画面を終了させま す。

ベクトルの加算と減算

ベクトルの加算と減算を行なう手順を以下に示しています。

例:ベクトルA = (9,5)でベクトルB = (7,3)の場合、ベクトルAーベクトルB = ?

操作	表示(上の行)	表示(下の行)
Shift VCTR 1 1 (ベクトルA作成)	VctA(m) m?	0.
2 = (ベクトルAの次元は2)	VctA ₁	0.
9 = 5 = (要素入力)	VctA ₁	9.
^{Shift VCTR} 1 2 (ベクトルB作成)		
2 (=)	VctB ₁	0.
7 = 3 = (要素入力)	VctB ₁	7.
ON/C Shift VCTR 3 1 - Shift VCTR		
3 2	VctA - VctB	0.
=	VctAns ₁	2.
→	VctAns ₂	2.

! ベクトルの加算、減算は同じ次元のベクトルどうしでのみ可能です。例えば、ベクトルA (a, b, c)とベクトルB (d, e)の加算や減算を行うことはできません。

ベクトルのスカラー倍を求める

ベクトルの各位置に単一値が掛けられ、同じサイズの行列がもたらされます。

s x VctA(a,b) = VctB(axs, bxs)

固定倍数によるベクトルのスカラー倍を求める手順を以下に示して います。

例:ベクトルC = (4, 5, -6)に5を掛ける。

操作	表示(上の行)	表示(下の行)
Shift VCTR 1 3 (ベクトルC作成)	VctC(m) m?	0.
3 =	VctC ₁	0.
4(=)5(=)(-)6(=)(要素入力)	VctC ₁	4.
ON/C 5 × Shift VCTR 3 3	5 x VctC	0.
\equiv (5 x VctC)	VctAns ₁	20.
→	VctAns ₂	25.
→	VctAns ₃	-30.

2つのベクトルの内積を計算する 2つのベクトルの内積を計算する手順を以下に示しています。

日本語

例:ベクトルAとベクトルBの内積を計算する。(ベクトルA = (4, 5, -6)、ベクトルB = (-7, 8, 9)で、すでに両方のベクトルは作成されている。)

操作	表示(上の行)	表示(下の行)
ON/C Shift VCTR 3 1 (ベクトル		
A呼び出し)	VctA	0.
Shift VCTR →	Dot	1
1	VctA -	0.
Shift VCTR 3 2	VctA - VctB	0.
= (VctA - VctB)	VctA - VctB	-42.

! ベクトルの内積の計算は同じ次元のベクトル同士でのみ可能です。

2つのベクトルの外積を計算する

2つのベクトルの外積を計算する手順を以下に示しています。

例:ベクトルAとベクトルBの外積を計算する。(ベクトルA = (4, 5,-6)、ベクトルB = (-7,8,9)で、すでに両方のベクトルは作成 されている。)

操作	表示(上の行)	表示(下の行)
ON/C Shift VCTR 3 1(ベクトル		
A呼び出し)	VctA	0.
×	VctA x	0.
Shift VCTR 3 2	VctA x VctB	0.
= (VctA x VctB)	VctAns ₁	93.
→	VctAns ₂	6.
→	VctAns ₃	67.

! ベクトルの外積の計算は同じ次元のベクトル同士でのみ可能です。

ベクトルの絶対値を求める

ベクトルの絶対値を求める手順を以下に示しています。

例:ベクトルCの絶対値を求める。(すでにベクトルC = (4, 5, -6) は 作成されている。)

操作	表示(上の行)	表示(下の行)
Shift Abs Shift VCTR 3 3	Abs VctC	0.
=	Abs VctC	8.774964387

例:ベクトルA = (-1, -2, 0)とベクトルB = (1, 0, -1)に基づいて、ベクトルAとBがなす角度 θと、AとBの両方に直行する単位ベクトルを求める。

$$\cos \theta = \frac{(A \cdot B)}{|A||B|}, -方 \theta = \cos^{-1} \frac{(A \cdot B)}{|A||B|}$$

AとBの両方に直交する単位ベクトル = $\frac{A \times B}{|A \times B|}$

結果: <u>/VctA x VctB</u> =(0.6666666666, -0.333333333, 0.6666666666)

操作	表示(上の行)	表示(下の行)
Shift VCTR 1 1 3 = (ベクトルA作成)	VctA ₁	0.
[]1=](-]2=0=(要素入力)	VctA ₁	-1.
Shift VCTR 1 2 3 = (ベクトルB作成)	VctB ₁	0.
1 = 0 = (-)1 = (要素入力)	VctB ₁	1.
$\begin{array}{c} \hline \text{ON/C} & \stackrel{\text{Shift VCTR}}{\longrightarrow} 3 & 1 & \stackrel{\text{Shift VCTR}}{\longrightarrow} 1 & \text{Shi$	VctA - VctB	-1.
① Shift Abs Shift VCTR 3 1 × ③ ③ Shift Abs Shift VCTR 3 2) = ① ③ ③ ②) = ① ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Ans ÷ (Abs Vct	-0.316227766
^{Shift cos⁻1} (cos⁻1 (A・B) □ □ Ans = (cos⁻1 / (A・B) A B を計算)	cos ⁻¹ Ans	108.4349488
Shift VCTR 3 1 × Shift VCTR 3 2 (VctA x VctB = (2, -1, 2)を計算)	VctAns ₁	2.
Shift Abs Shift VCTR 3 4 = (VctA x VctB を計算)	Abs VctAns	3.
Shift VCTR 3 4 ÷ Ans =		
(VctA x VctB を計算)	VctAns ₁	0.666666666
→	VctAns ₂	-0.3333333333
⇒	VctAns ₃	0.666666666

電池の交換

液晶ディスプレイのコントラストを調整しても表示部の文字が 不鮮明である場合には、以下の手順でリチウム電池を交換して くだ<u>さ</u>い。

- 、ハーン・・。 1. ○ を押して計算機の電源をオフにしてください。
- 2. 電池カバーを固定しているネジを外してください。
- 3. 電池カバーを少しスライドさせてから、持ち上げてください。
- 4. ボールペン等の先の尖った物で、古い電池を取り外してください。
- 5. プラス"+"側を上にして、新しい電池を装填してください。
- 6. 電池カバーを元の場所に取り付けてネジで留め、リセットボ タンを押して計算機を初期化してください。

- ▲:交換する電池の種類を間違うと、電池の破裂、液漏れにより 周囲の汚損やけがの原因になることがありますので、指定以 外の電池は使用しないでください。
- 使用済みの電池は、+極とー極をテープで絶縁してから、お住まいの地域の環境法と廃棄基準に従って廃棄してください。
- 計算中にすべてのキーの機能が働かなくなる等の異常が発生した場合は、本体裏面のRESETボタンを先端の細いもので押してください。

語

₩

Π

リセット方法

【電池使用上のご注意】

- ▲ 電池は子供の手の届かない場所に保管してください。電池を飲み 込んでしまった場合は、直ちに医師に診てもらってください。
- ▲ 電池を誤って使用すると、漏れ、爆発、損傷、けがの原因に なることがあります。
- ▲ 電池を再充電したり分解しないでください。短絡の原因になることがあります。
- ▲ 電池を高温や直火にさらしたり、焼却処分しないでください。

仕様

電源	:リチウム電池1個(本体裏面を参照)
消質電刀 電池寿命	: D.C. 3.0V / 6mW : 点滅するカーソルの連続表示で約6.000時間
オートパワーオフ	:約7分
使用温度	: 0 ~ 40°C
大きさ :155(L)x	:80 (W) x 14.5 (H) mm(本体)
158 (L) x	、84 (W) x 18 (H) mm(ケース付き)
重量 :100 g	
135 g (5	カバーを含む)
* 仕様は予告なしに	こ変更されることかあります。